Nils Poschadel, M. Sc.

Nils Poschadel, M. Sc.
Adresse
Appelstraße 9a
30167 Hannover
Gebäude
Raum
Nils Poschadel, M. Sc.
Adresse
Appelstraße 9a
30167 Hannover
Gebäude
Raum
  • Persönliche Informationen

    Curriculum Vitae

    Nils Poschadel received the M. Sc. degree in mathematics with an emphasis on numerics and optimization from the Gottfried Wilhelm Leibniz Universität Hannover in 2017. Since then, he works as a research assistant towards a doctoral degree (Dr.-Ing.) at the Institut für Kommunikationstechink (IKT) of the Gottfried Wilhelm Leibniz Universität Hannover.

    Research Interests

    • Machine learning based audio signal processing
    • Sound scene analysis
    • Direction of arrival estimation
    • Acoustic parameter estimation
    • Spatial audio

    Teaching

    • Teacher of exercise "Signale und Systeme"
    • Teacher of student laboratory "Übertragungstechnik"

     Awards

    • Best Student Technical Paper Award, 150th Audio Engineering Society Convention, 2021. N. Poschadel et al., “Further Insights on the Influence of a Dynamic Binaural Synthesis on Speech Intelligibility in TETRA-coded Voice Communication,” in Audio Engineering Society Convention 150, 2021.
  • Publikationsliste

    Konferenzbeiträge

    • Nils Poschadel, Stephan Preihs, Jürgen Peissig (2024): Deep-Learning-based Sound Source LocalizationFortschritte der Akustik - DAGA 2024, 50. Jahrestagung für Akustik, Hannover | Datei |
    • Nils Poschadel, Stephan Preihs, Jürgen Peissig (2023): Comparison of Regression and Classification Models for Multi-Source Direction of Arrival Estimation with Convolutional Recurrent Neural NetworksFortschritte der Akustik - DAGA 2023, 49. Jahrestagung für Akustik, Hamburg | Datei |
    • Nils Poschadel, Stephan Preihs, Jürgen Peissig (2023): LoCOMo: A Low-Cost Open-Source Head Motorization Kit155th Convention of the Audio Engineering Society (peer-reviewed full paper; accepted for publication) Weitere Informationen
    • Roman Kiyan, Nils Poschadel, Stephan Preihs, Jürgen Peissig (2022): Adaption of Layerwise Relevance Propagation for Audio ApplicationsFortschritte der Akustik - DAGA 2022, 48. Jahrestagung für Akustik, Stuttgart | Datei |
    • Nils Poschadel, Roman Kiyan, Stephan Preihs, Jürgen Peissig (2022): On the impact of input scaling strategies for deep learning based DOA estimation from Ambisonics signalsICA 2022, Gyeongju
    • Nils Poschadel, Robert Hupke, Stephan Preihs, Jürgen Peissig (2021): Direction of Arrival Estimation of Noisy Speech using Convolutional Recurrent Neural Networks with Higher-Order Ambisonics Signals29th European Signal Processing Conference (EUSIPCO 2021)
      DOI: https://doi.org/10.23919/EUSIPCO54536.2021.9616204
    • Nils Poschadel, Stephan Preihs, Jürgen Peissig (2021): Multi-Source Direction of Arrival Estimation of Noisy Speech using Convolutional Recurrent Neural Networks with Higher-Order Ambisonics Signals29th European Signal Processing Conference (EUSIPCO 2021)
      DOI: https://doi.org/10.23919/EUSIPCO54536.2021.9616002
    • Nils Poschadel, Christian Gill, Stephan Preihs, Jürgen Peissig (2021): CNN-based multi-class multi-label classification of sound scenes in the context of wind turbine sound emission measurementsProceeding of the INTERNOISE 2021 Weitere Informationen
      DOI: https://doi.org/10.3397/IN-2021-2205
    • Nils Poschadel, Mahdi Alyasin, Stephan Preihs, Jürgen Peissig (2021): Further Insights on the Influence of a Dynamic Binaural Synthesis on Speech Intelligibility in TETRA-coded VoiceCommunication150th Convention of the Audio Engineering Society (peer-reviewed full paper), online virtual conference
    • Nils Poschadel, Robert Hupke, Stephan Preihs, Jürgen Peissig (2021): Room Geometry Estimation from Higher-Order Ambisonics Signals using Convolutional Recurrent Neural Networks150th Convention of the Audio Engineering Society (peer-reviewed full paper), online virtual conference
    • Robert Hupke, Sebastian Lauster, Nils Poschadel, Marcel Nophut, Stephan Preihs and Jürgen Peissig (2020): Localization and Categorization of Early Reflections for Estimating Acoustic Reflection Coefficients2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP),2020
      DOI: 10.1109/MMSP48831.2020.9287099
    • Nils Poschadel, Christian Gill, Stephan Preihs, Susanne Mertens, Jakob Bergner, Raimund Rolfes, Jürgen Peissig (2020): Machine Learning basierte Klassifikation von Außenschallszenen für Lärmmessungen an WindenergieanlagenFortschritte der Akustik - DAGA 2020, 46. Jahrestagung für Akustik, Hannover
    • Nils Poschadel, Mahdi Alyasin, Stephan Preihs, Jürgen Peissig (2020): Investigations on the Influence of a Dynamic Binaural Synthesis on Speech Intelligibility in Communication ApplicationsFortschritte der Akustik - DAGA 2020, 46. Jahrestagung für Akustik, Hannover
    • Javier Conte Alcaraz, Sanam Moghaddamnia, Nils Poschadel and Jürgen Peissig (2018): Machine Learning as Digital Therapy Assessment for Mobile Gait Rehabilitation28th IEEE International Workshop on Machine Learning for Signal Processing, September 17-20, 2018, Aalborg, Denmark
      DOI: 10.1109/MLSP.2018.8517005
    • Nils Poschadel, Sanam Moghaddamnia, Javier Conte Alcaraz, Marc Steinbach and Jürgen Peissig (2017): A Dictionary Learning Based Approach for Gait Classification22nd International Conference on Digital Signal Processing (DSP), 23-25 August 2017
      DOI: 10.1109/ICDSP.2017.8096121

    Diplom-/Masterarbeiten

    • Hao Yu (2023): Automated Audio Captioning With Transformer, Masterarbeit, ÜT (Betreuer: Zhao Ren, Nils Poschadel)
    • Wei Wang (2023): Towards Automatic Heart Sound Segmentation, Masterarbeit, ÜT (Betreuer: Zhao Ren, Nils Poschadel)
    • Aly Tobbala (2022): A prototyping framework for an immersive AR authoring platform in the mobility domain, MA, ÜT (Betreuer IKT: Nils Poschadel, Stephan Preihs)
    • Shan Ahmed Shaffi (2022): Direction of Arrival Estimation with Spherical Microphone Arrays using Deep Neural Networks, MA, ÜT (Betreuer: Nils Poschadel)
    • Christian Gill (2022): Audiosynthese von Windenergieanlagen-Schallszenen auf Basis von generativen neuronalen Netzen, MA, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)
    • Roman Kiyan (2021): On the Interpretability of Deep Neural Networks for the Analysis of Spatial Sound Fields using Higher-Order Ambisonics Signals, MA, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)
    • Ahmed Elsheikh (2021): Damage Detection with Machine Learning Algorithms on the example of Port Structures, MA, ÜT (Betreuer IKT: Nils Poschadel)
    • Sebastian Hillert (2020): Intelligente Auswertung von Betriebsdaten einer Werkzeugmaschine im Kleinserienbetrieb, MA, ÜT (Betreuer/in: Petra Hildebrand, Nils Poschadel)
    • Chenxi Wang (2020): Trajectory Analysis at Intersections, MA, ÜT (Betreuer/in: Stefania Zourlidou, Nils Poschadel)
    • Mahdi Alyasin (2019): Untersuchungen zum Einfluss einer dynamischen Binauralsynthese auf Eigenschaften der Sprachwahrnehmung in Kommunikationsanwendungen , MA, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)
    • Nils Poschadel (2017): Entwicklung effizienter Methoden des Dictionary Learning zur Gangklassifizierung hochdimensionaler Sensordaten, MA, ÜT (Betreuer: S. Moghaddamnia, Javier Conte Alcaraz)
    • Yongzhen Yu (2017): Verfahren der Hauptkomponentenanalyse zur multisensoriellen Gangbildanalyse, MA, ÜT (Betreuer: S. Moghaddamnia, Javier Conte Alcaraz und N. Poschadel)

    Studien-/Bachelorarbeiten

    • Imen Talbi (2023): Deep Learning based Indoor Localization using WiFI 6 Channel State Information, Seminararbeit, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)
    • Jan-Erik Hühne (2020): 2020 Klassifikation urbaner binauraler Schallszenen unter Verwendung von Deep Learning, BA, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)
    • Christian Gill (2020): Transferlernen zur Klassifizierung von Außenschallszenen im Rahmen der Lärmmessung an Windenergieanlagen, BA, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)
    • Hedan Qian (2019): Machine Learning based Head Gesture Classification, Studienarbeit, ÜT (Betreuer: Nils Poschadel)
    • Ayoub Selmi (2019): Investigations on Machine Learning based Audio Coding, BA, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)
    • Julian Krohne (2019): Machine Learning basierte Audioszenenklassifikation, BA, ÜT (Betreuer: Nils Poschadel, Stephan Preihs)

    Sonstiges

    • Lun Chen (2018): Evaluation of Machine Learning Algorithms for HRTF Individualization, Projektarbeit, ÜT (Betreuer: Song Li, Nils Poschadel)
  • Forschungsprojekte